
COtLEGE OF ENGINEERING 
DEPARTMENT OF ELECTRICAL ENGINEERING 

SPACE PHYSICS RESEARCH LABORATORY ’ 

Technicol Report 

On the Optimiration of the Space Physics 
Research Laboratory Ultrahigh Vacuum System 

I 
l Prepared on behalf of the proiect b y  

- A  o u -  

* a  
Q Y  

I T  
- I  

Under contract with: s z m  0 

g s 4  $ r  

a CD National Aeronautics and Space Administration 

* 
v) 
w 
0 
PE 

- 
- 
n 
F= 
2 

George C, Marshall Space Flight Center ’ 0 
~ 

Contract No. NAS8-21084 
H u n tsvi I le, Alabama i 

-. 1 

I i  

I . 
I \ 

Admidstered through: 

aa :,j 

November 1967 

.. , / / 



u 
8 
I 
I 
E' 
I' 
I 
1 

I 
ff 
1 
I 
1 
I 
I 
I 
I 
I 

m 

T H E  U N I V E R S I T Y  O F  M I C H I G A N  

COLLEGE OF ENGINEERING 
Department of E l e c t r i c a l  Engineering 

Space Physics Research Laboratory 

Technical Report 

O N  THE OPTIMIZATION OF THE 
SPACE PHYSICS RESEARCH LABORATORY ULTRAHIGH VACUUM SYSTEM 

Adel Eltimsahy 

ORA Pro jec t  08902 

under cont rac t  with: 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
GEORGE C .  MARSHALL SPACE FLIGHT CENTER 

HUNTSVILLE, ALABAMA 
CONTRACT NO. NAS8-21086 

administered through: 

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR 

November 1967 



PKECEDING PAGE BLANK NOT FILMED? 

ACKNOWLEDGMENTS 

The author wishes t o  express h is  apprec ia t ion  t o  M r .  George R .  Carignan, 
Director of t he  Space Physics Research Laboratory, Department of E l e c t r i c a l  
Engineering, of The University of Michigan, f o r  h i s  advice and guidance 
throughout the  period during which the work repor ted  here in  was performed. 
Further thanks go t o  M r .  Vernon H .  Soden of t he  Space Physics Research Labora- 
t o r y  for h i s  se rv ices  i n  t h e  design and t echn ica l  cons t ruc t ion  of t h e  system 
described i n  t h e  present r e p o r t .  I n  addi t ion ,  t he  author i s  indebted t o  Pro- 
f e s so r  Louis F.  Kazda, Department of E l e c t r i c a l  Engineering, who served a s  
chairman of h i s  doc tora l  committee and continued t o  a s s i s t  him i n  the  per- 
formance of h i s  research on t h e  pro jec t  reported.  

This research was supported by the  National Aeronautics and Space Admin- 
i s t r a t i o n ,  Contract No. NAS8-21086, and administered through the  George C .  
Marshall Space F l i g h t  Center, Huntsville, Alabama. 

iii 



LIST OF FIGURES 

ABSTRACT 

1. INTRODUCTION 

TABLE OF CONTENTS 

Page 

2. A DESCRIPTION OF THE SPACE PHYSICS RESEARCH LABORATORY 
ULTRAHIGH VACUUM SYSTEM 

3. THE MATHEMATICAL MODEL OF THE VACUUM SYSTEM 

3.1 
3.2 The Variable Leak Valve Model 
3.3 The Ionization Gauge Control ler  Model 
3.4 

The Vacuum Chamber and Pump Piping Model 

Model of the  Driving Motor and Gear Train 

4. OPTIMIZATION OF THE VACUUM SYSTEM BY USING 
THE MODERN CONTROL THEORY 

4 . 1  
4.2 The Optimization Cr i t e r ion  
4.3 The P rac t i ca l  Implementation 

Reformation of t h e  Mathematical Model 

5 .  A SUB-OPTIMAL SYSTEM 

6. REFERENCES 

i v  

V 

v i  

1 

1 

2 

2 
6 
9 
11 

17 

20 



LIST OF FIGURES 

Figure 

1. Plant  of the u l t rah igh  vacuum system. 

2 .  Schematic diagram of t h e  vacuum system. 

,- Z. E l e c t r i c  c i r c u i t  ma log  of the vacum system. 

4 .  Leak-valve sea l ing  mechanism. 

5 .  Driving mechanism. 

6. Leak r a t e  vs .  t u rns .  

7. The Granvi l le-Phi l l ips  ionizat ion gauge con t ro l l e r  
a s  a por t ion  of the  vacuum system. 

8. Vacuum system cha rac t e r i s t i c s .  

9. Block diagram of t he  vacuum system. 

10. The dr iving motor. 

11. The coulomb f r i c t i o n  force  introduced i n  the  vacuum system. 

12.  S t a t e  space for the  vacuum system. 

13. 

14. Maurer servo amplif ier  . 
Schematic diagram of t h e  optimal vacuum system. 

15. 

16. 

l7* Block diagram of t h e  sub-optimal system. 

Chopper and voltage amplif ier  s tage.  

D i f f e r e n t i a l  amplifier and compensating c i r c u i t .  

v 

Page 

2 

4 

1, 
Lf 

10 

11 

12 

12 

16 

16 

17 

18 

19 

19 



ABSTRACT 

The problem of mathematically modeling the  u l t r ah igh  vacuum system and 
of determining methods f o r  t he  optimizing of i t s  performance i s  
the  repor t  “On the Optimization of t h e  Space Physics Research Laboratory Ulta- 
high Vacuum System.” 

discussed i n  

The approach used i s  the  u t i l i z a t i o n  of modern con t ro l  theory methods t o  
synthesize a control scheme which optimizes the  system performance with re- 
spect t o  a predetermined cos t  function. 

A sub-optimal c o n t r o l l e r  f o r  t h e  system i s  then presented which overcomes 
the  f i n a n c i a l  problems assoc ia ted  with the  optimal system t h a t  bese t  a t r u l y  
optimal system. 
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1. INTRODUCTION 

1 
I 
1 
I 

I n  the  Space Physics Research Laboratory a t  The Universi ty  of Michigan, 
an attempt t o  optimize the performance of the ex i s t ing  vacuum system accord- 
ing t o  a prescr ibed c r i t e r i o n  has been made. The techniques of modern con t ro l  
theory have been appl ied.  Before i ts  construct ion,  the  r e s u l t i n g  con t ro l l e r  
has been inves t iga ted  from the  economical and p rac t i cab le  poin ts  of view. 
the  optimal system con t ro l l e r  cannot be implemented pract icably,  then consider- 
a t i o n  should be given t o  the  use of a c l a s s i c a l  c e n t r o l l e r .  I n  addi t ion,  if  
t h e  optimal system proves t o  be uneconomical, an  inves t iga t ion  should a l so  be 
made f o r  t he  use of a sub-optimal con t ro l l e r .  F ina l ly ,  the r epor t  includes a 
p r a c t i c a l  design f o r  the  construction of a con t ro l l e r  which improves the per- 
formance of the  ex i s t ing  vacuum system. 

If 

‘2. A DESCRIPTION OF THE SPACE PHYSICS RESEARCH LABORATORY 
ULTRAHIGH VACUUM SYSTEM 

The u l t rah igh  vacuum system, designed and assembled a t  t h e  Space Physics 
Research Laboratory, cons i s t s  of the following components, each serving a spe- 
c i f  i c  purpose: 

a .  The vacuum chamber, whose pressure must be control led;  

b .  The vacuum pump, which removes gases from the  chamber; 

c.  The leak  valve, the device which va r i e s  the  amount of gas leak- 
ing t o  the  pressure-controlled chamber; and 

d. The pressure gauge, the component that  senses the  pressure i n  
the  vacuum chamber and makes it ava i lab le  f o r  measuring and 
recording. 

I n  order t o  study the  vacuum system from the  cont ro l  system poin t  of view, 
it i s  necessary t o  analyze the  components l i s t e d  above. When the  system i s  
s tud ied  from t h e  cont ro l  system point of view, o ther  p a r t s  of t he  vacuum sys- 
t e m ,  e .g . ,  t he  oven f o r  baking and o ther  accessory equipment f o r  performing ex- 
periments,  a r e  considered t o  have l i t t l e  or no e f f e c t .  

For t h e  vacuum system under study, the  pressure i s  being cont ro l led  i n  an 
open-loop fashion.  There i s  no way t o  compensate f o r  disturbances i n  the  sys- 
tem r e s u l t i n g  from the  outgassing e f f e c t  of the wal ls  o r  from the  absorbing ef-  
f e c t .  Normally the  operator  i s  faced with two problems. The f i r s t  one i s  se t -  

1 



t i n g  the  valve posi t ion i n  order t o  have a des i red  pressure,  a tedious opera- 
t i o n  which requires  much time, even by an  experienced operator .  An overshoot 
due t o  the  time lag introduced by the  vacuum chamber, which consequently in- 
creases  the  s e t t l i n g  time of t he  system, usua l ly  r e s u l t s .  The second problem 
a r i s e s  when a disturbance occurs i n  the  system and changes the  output pres- 
sure .  Unless the system i s  monitored by the  operator ,  t he  a c t u a l  pressure  
may be s i g n i f i c a n t l y  d i f f e r e n t  from the des i red  value.  The operator  mentally 
computes t h e  amount he must open o r  c lose  the  valve t o  co r rec t  t h e  undesirable 
s i t u a t i o n  which has developed i n  order t o  r e s t o r e  the  pressure t o  t h e  des i red  
value.  Manual performance of t he  small  va r i a t ions  i n  the  opening o r  c los ing  
of t h e  valve i s  d i f f i c u l t  because of mechanical problems assoc ia ted  with the  
ex i s t ing  leak valves (pr imar i ly ,  backlash and valve nonlinear ga in  over the  
operat ing range) and because of the  phys ica l  l imi t a t ions  of t h e  human opera- 
t o r .  

Voltage Motor 8, 
Input 

- -c 

3. THE MATHEMATICAL MODEL OF TKE VACUUM SYSTEM 

- i 

Gear Leak Valve Leak Vacuum Ion Ionization Output 
-c -- Chamber 8. Z- Gauge - 

Ratch) Pump Piping Current Qntrdler Pressure 

The main object ive o f  developing the  mathematical model of t he  vacuum sys- 
tem i s  t o  optimize the  performance of t he  vacuum system according t o  a def ined 
optimization c r i t e r i o n .  To do so f i r s t  requi res  a d e f i n i t i o n  of t h e  p l an t  and 
then the  development of the  mathematical model. 
of t he  vacuum system r e f e r  t o  the  u l t r ah igh  vacum system (UHVS) components de- 
f ined  above and t o  the dr iving system. The d r iv ing  system cons i s t s  of a motor 
and a poss ib le  gear t r a i n .  An a-c dr iv ing  system w i l l  be used i n  order  t o  avoid 
the  d i f f i c u l t i e s  u sua l ly  assoc ia ted  with a d-c dr iv ing  system. These components 
may be in tegra ted  i n t o  a schematic block diagram ind ica t ing  t h e i r  r e l a t i o n s h i p  
t o  the  o v e r a l l  system (Figure 1). 

The p l a n t  o r  t h e  f i x e d  por t ions  

Outside Disturbance 
(outgassing 01 absorbing 1 t 

Figure 1. Plant  of  t he  u l t r ah igh  vacuum system. 

3.1 THE VACUUM CHAMBER AND PUMP PIPING MODEL 

The vacuum chamber and pump p ip ing  model depends on t h e  formulat ion of 
the  e l e c t r i c  c i r c u i t  analog f o r  a vacuum system. The idea of such an  analog 
r e s t s  upon t h e  fundamental s i m i l a r i t y  between t h e  flow of gas i n  a vacuum sys- 
tem and t h a t  o f t h e  charge i n  an RC e l e c t r i c  c i r c u i t  (1,2). The s c a l a r  po in t  
funct ion,  e l e c t r i c a l  p o t e n t i a l  i n  e l e c t r i c a l  f i e l d  theory,  corresponds t o  the  
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1 

I 
I 
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sca la r  point funct ion i n  gas flow pressure.  
t i t y  charge corresponds t o  conservation of mass. 
conductance of a conductor corresponds t o  the  concept of a flow-conductance of 
a component of t he  vacuum system. The e l e c t r i c a l  capaci ty  of a conductor corre- 
sponds t o  the  volume of a vacuum system component. 

Conservation of t h e  sca l a r  quan- 
The concept of e l e c t r i c a l  

By using these concepts, the  e l e c t r i c  c i r c u i t  analog of t he  vacuum sys- 
tem, shown schematically i n  Figure 2, i s  given i n  Figure 3 .  The symbols in- 
troduced i n  Figure 3 a r e  defined as follows: 

I = Controlled var iab le  leak r a t e  source of t h e  leak valve 

I d  = Uncontrolled var iab le  leak r a t e  equivalent source of  t he  
absorption o r  outgassing of chamber walls 

Cl = Volume of t h e  vacuum chamber 

G 1  = - = Conductance of t h e  vacuum chamber 
R1 

C2 = Volume of pump piping 

G2 = - = Conductance of pump piping 

The system equation i n  the complex frequency domain f o r  t he  model i n  

R2 

Figure 3 y i e lds  

By rearranging, 

P ( s )  scl + 

3 



Vacuum 
Chamber 

Vacuum 
Pump 

Figure 2.  Schematic diagram of the  vacuum system. 

Vacuum Chamber 

7 
I Vacuum Pump 
v a  i ts Piping 

‘C2 I 
I 
I 
I 

r----------- 
I 
I 

J L ----------- 1 
L-,,,,,, 

Figure 3. E l e c t r i c  c i r c u i t  analog of the  vacuum system. 
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It i s  evident from t h e  dimensions of the  vacuum system t h a t  C2<< C1 
I cf-,amber v o l m e  i s  much l a rge r  than pump piping volume). Therefore 

P( s) -- 
I(s) + I d ( S )  

N 1 - 
(Rl +R2' * 1 + C1(R1 + R 2 ) s  

This r e l a t i o n  means t h a t  the vacuum chamber with the  pump piping can be 
represented i n  the ove ra l l  system by a gain ( R 1  + R 2 )  and a time constant  
Cr (R1  f R 2 ) .  
€?2 (which a r e  r e l a t e d  t o  t he  speed of t he  pump), so  long a s  the  volume of the  
chamber i s  much l a rger  than t h e  volume of t he  pump piping.  

This mathematical model i s  v a l i d  f o r  a l l  f i n i t e  values of R1 and 

For the  vacuum system under consideration, 

c1 = 1061 

For t he  normal operat ing 
speed of the  pump H~ = 0.00667 s/ I  1 R1 = 0.2 

T i m e  Constant = 106 x 0.20667 

5 



3.2 THE VARIABLE LEAK VALVE MODEL 

The valve used i n  t h e  var iab le  leak system i s  make by the  Varian Vacuum Divi- 
s ion  ( 3 ) .  It includes a movable p i s ton  with an o p t i c a l l y - f l a t  sapphire t h a t  
meets a captured metal gasket.  The movement of t h e  sapphire i s  cont ro l led  
through a threaded shaft-and-lever mechanism having a mechanical advantage of 
13,000 t o  1. Spring washers keep the  dr ive  mechanism cons tan t ly  loaded i n  
order t o  minimize backlash. 
and 5 .  The 
valve component presents the  major nonl inear i ty  i n  t h e  vacuum system. The 
mathematical model of t h i s  component cons i s t s  only of a va r i ab le  gain, s ince  
t h e  dynamic behavior of t h e  mechanical elements of t h e  valve i s  neglected. 
Therefore, t h e  valve as a component i n  the  vacuum system has a zero time con- 
s t a n t  and a zero delay. 

The construction d e t a i l s  a r e  shown i n  Figures 4 
Figure 6 shows t h e  leak r a t e  a s  a func t ion  of t he  knob tu rns .  

6 
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1 

F1 . w e  4. Leak-valve sealing mechanism. 

i 

Figure 5 .  Driving mechanism. 
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3.3 THE IONIZATION GAUGE CONTROUER MODEL 

- 

Figure 7 represents  a schematic diagram of the  Granvi l le-Phi l l ips  Company 
Control ler  used t o  sense and measure the  pressure i n  the  vacuum system. For 
more d e t a i l s ,  the  reader i s  re fer red  t o  the  con t ro l l e r  manual ( 4 ) .  By considering 
the  chamber pressure as  i t s  input  and t h e  vol tage reading a s  the  output,  such 
an instrument i s  l i n e a r  over each operating range. I ts  time constant i s  l e s s  
than 0 .5  second. 

'150V + 
Power ' 

Figure 7. The Granvi l le-Phi l l ips  ion iza t ion  gauge 
c o n t r o l l e r  a s  a port ion of t h e  vacuum system. 

An experimental t e s t  has been made i n  order  t o  determine the combined 
c h a r a c t e r i s t i c s  of the  three  components l i s t e d  above, t he  valve, the  chamber, 
and t h e  ion gauge con t ro l l e r .  
degrees,  and the  output i s  the  voltage read by a d i g i t a l  voltmeter connected 
across  the  output of t he  ion gauge cont ro l le r .  
t h ree  d i f f e r e n t  ranges of the ion gauge con t ro l l e r ,  a r e  i l l u s t r a t e d  i n  Figure 8. 
The curves represent  s teady-rate  readings. 
p r imar i ly  due t o  t h e  valve cha rac t e r i s t i c s .  

The input, which i s  the  knob ro t a t ion ,  i s  i n  

Three curves, obtained f o r  

The nonl inear i ty  of the system i s  

9 
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The equations representing the vacuum system i n  the  time domain take now 
the  following form: 

2 

Chamber 
I& 

Leak 
-t *dt) Valve 

and 

Electronic lonizat ion 
Gauge P_o Voltmeter 
Controller 

output 
Voltage 

where F i s  a nonlinear func t ion  of the input €lo( t ) ,  and P( t )  i s  t h e  time de- 
r i v a t i v e  of t he  chamber pressure.  If T i s  t h e  time constant of t h e  ion iza t ion  

€5 
gauge con t ro l l e r ,  the  pressure P ( t )  and the  voltage reading V ( t )  of the  ion  
gauge con t ro l l e r  can be r e l a t e d  a s  follows: 

7 V ( t )  + V ( t )  = Kg P ( t )  g 

Where V ( t )  i s  the  t i m e  de r iva t ive  of t h e  voltage reading, Kg i s  the  ga in  of t he  
ion iza t ion  gauge c o n t r o l l e r .  Figure 9 i s  a block diagram of t h e  vacuum system. 

Figure 9. Block diagram of the  vacuum system. 

3.4 MODEL OF THE DRIVING MOTOR AND GEAR T R A I N  

I n  small-power con t ro l  systems, where t h e  maximum output required from 

The torque required t o  dr ive  t h e  leak  valve has 
t h e  motor ranges from a f r a c t i o n  of a watt  up t o  a few hundred watts, 2-phase 
induct ion  motors a r e  used. 
been measured and has been found t o  be approximately 4 oz-in. 
Navy type CDA-211052 Diehl a-c control-servo motor i s  suggested a s  t he  d r ive r .  
The motor cons i s t s  of a s t a t o r  with two windings displaced 90 e l e c t r i c a l  de- 
grees from each o ther  and of a high r e s i s t ance  squirrel-cage r o t o r .  Figure 
10 rep resen t s  a schematic diagram of t he  motor. A capac i tor  i s  used i n  order 
t o  e s t a b l i s h  t h e  90" phase s h i f t .  

A FPE25-11, 

It can be shown (5,7) f o r  such a motor t h a t  

d2% dQm 
7 - + -  + c s i n  ( e , )  = & v i ( t )  

d t2  d t  

11 



Phase @ 

A 

Reference 
Phase 

I 

Coulomb Force 

I h0 
Input Velocity 

Figure 10. The dr iv ing  motor. 

Where Tm i s  t h e  time constant o f themoto r ,  v i ( t )  i s  the  input voltage s i g n a l  t o  
the  con t ro l  winding of the motor, k, i s  i t s  gain, Qm(t) i s  t h e  pos i t i on  angle 
of t h e  motor shaft ,  and Qo(t) i s  t h e  input p o s i t i o n  angle (angle  of t h e  valve 
knob s h a f t ) .  

Hence eo( t )  = kg Qm(t) 

where kg = gear r a t i o  

It should be noted t h a t  t h e  term C s i n  
fo rce  introduced i n  the  system (Figure 11). 

(€3,) represents  t h e  coulomb f r i c t i o n  

Figure 11. The coulomb f r i c t i o n  f o r c e  
introduced i n  the  vacuum system. 

12 



4. OPTIMIZATION OF THE VACUUM SYSTEM 
BY USING THE MODERN CONTROL THEORY 

c 

The mathematical model developed previously i s  used t o  formulate a method 
f o r  optimally cont ro l l ing  the  vacuum system i n  accordance w i t h  a prescribed 
performance c r i t e r i o n .  
pressure and of reducing the  deviation from a prescribed reference value t o  
zero, while a t  t he  same time minimizing the  value of some predetermined per- 
formance of cos t  func t iona l  J. The development of t he  optimal c o n t r o l  law 
proceeds e s s e n t i a l l y  i n  four  s t eps .  The f i r s t  s t e p  c o n s i s t s  of a reformula- 
t i o n  of the  mathematical model i n  a form which is m r e  su i tab le  f o r  t he  appl i -  
ca t ion  of optimization techniques.  I n  the  second s tep ,  an optimization c r i -  
t e r i o n  i s  defined. I n  the  t h i rd  step, the p a r t i c u l a r  optimization technique 
b e s t  su i t ed  f o r  t he  optimization problem i s  chosen. F ina l ly ,  i n  t h e  fou r th  
s tep ,  t h i s  optimization technique i s  u t i l i z e d  t o  cons t ruc t  the  optimal con t ro l  
system. 

The optimal problem i s  one of con t ro l l i ng  the  chamber 

4.1 REFORMATION OF THE MATHEMATICAL MODEL 

It i s  convenient t o  begin by reformulating t h e  equations representing t h e  
f ixed  por t ions  of t he  vacuum system i n  the  s t a t e  va r i ab le  formulation; i . e . ,  
i n  terms of a s e t  of f i rs t  order d i f f e r e n t i a l  equations (8 ) .  

For the  leak valve and the  vacuum chamber, it has been shown t h a t  

For the  ion iza t ion  gauge cont ro l le r ,  

and f o r  t h e  dr iv ing  motor and gear, 



Rearranging the  equations which represent the  f ixed  port ion of the  vacuum 
system r e s u l t s  i n  

1 

m 
Qt)  = - - T 0 ( t )  + kg km v i ( t )  - C s i n  [@,(t)] (4) 

Equations (1) through ( 4 )  represent  an accurate  s t a t e  var iab le  formulation 
of the vacuum system. For engineering purposes, however, t h e  following approx- 
imations can be applied t o  the  system without any appreciable e r ro r ;  

a .  The t i m e  constant of t h e  ion iza t ion  gauge con t ro l l e r  can be 
neglected with respect  t o  t h a t  of t h e  vacuum chamber. 

b .  The i n e r t i a  of the  load ( l eak  valve sha f t  and accessor ies )  
can be neglected s ince the  load is pr imar i ly  due t o  coulomb 
f r i c t i o n .  

c .  The cha rac t e r i s t i c s  of the valve can be assumed parabolic,  
i . e . ,  I ( t )  = kv e0 ( t ) ,  a s  observed from the  experimental 
curves . 

2 

Equations (1) through ( 4 )  now take the  following form: 
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I 
I Writing these equations i n  terms of t h e  observable s t a t e  var iables ,  the 

following equations a re  obtained: 

eo(t)  = - C '  s i n  [d0(t)] + k k '  v ( t )  ( 6 )  @ ; m i  

Equation (6)  can be represented by the  following two equations va l id  i n  
the  operating ranges of e,( t)  . 

i0(t) = - C' + k g m  k' v i ( t )  io(t) > 0 (7) 

i0(t) = C' + k g m  k '  v i ( t )  eo( t )  < 0 ( 8 )  

The primed quan t i t i e s  a r e  evident from equations (1) through ( 4 ) .  

4.2 THE OPTIMIZATION CRITERION 

For a given dynamic system, the optimization c r i t e r i o n  may assume a va r i e ty  
of forms, depending on the  requirement t o  be met. 
t i o n  c r i t e r i o n  i s  an important s t ep  i n  the  design of the  vacuum system since 
it determines t o  la rge  degree the nature of t h e  r e su l t i ng  optimal con t ro l l e r .  
The main object ive i n  the  optimization of t he  vacuum system a t  t he  Space Re- 
search Laboratory, The University of Michigan, i s  t o  obtain d i f f e ren t  l eve l s  
of pressure i n  a minimum time, and to  compensate f o r  any r e su l t i ng  d is tur -  
bances. Disturbances i n  the  system r e s u l t  pr imari ly  from e i t h e r  absorption or 
outgassing, and a re  usua l ly  minimized by baking the  system before operation. 
Therefore, t h e  major concern i s  t o  bring the system from one l e v e l  of pressure 
t o  another i n  minimum t i m e .  The optimal problem now i s  t o  choose a cont ro l  
vr(t)  such t h a t  it s a t i s f i e s  the d i f f e r e n t i a l  equations ( 5 ) ,  (7 ) ,  and ( 8 ) ,  
t h a t  it also s a t i s f i e s  the i n i t i a l  and f ina l  conditions, and t h a t  it concur- 
r e n t l y  minimizes the  following funct ional  form: 

The choice of the  optimiza- 

where: tl = i n i t i a l  t i m e  

t2 = f ina l  time 



Initial State 
v (t, 1, e& $1 
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Figure 12 .  S t a t e  space f o r  the  vacuum system. 

It i s  apparent from the  nonl inear i ty  of equations ( 5 )  and ( 6 )  represent ing  
t h e  system, t h a t  the so lu t ion  f o r  t he  optimal con t ro l l e r  i s  a very d i f f i c u l t ,  
i f  not  impossible, t a s k .  The r e su l t i ng  optimal c o n t r o l l e r  must sense t h e  s t a t e  
var iab les  of t h e  system: the  voltage read by the  ion iza t ion  gauge c o n t r o l l e r  
V( t ) ,  and the  output angle of t he  load eo( t ) .  These s t a t e  va r i ab le s  are  then 
f ed  back through time-varying gains K1 and K2. 
t i o n s  of t he  s t a t e  var iab les  e 0 ( t )  and V ( t ) ,  t he  i n i t i a l  conditions,  t he  d is -  
turbance I d ( t ) ,  and the  time t .  
i s  a nonlinear function of t he  s t a t e  va r i ab le s .  I n  block diagram form, the  
optimal con t ro l  system may be schematically represented a s  shown i n  Figure 13. 

The gains  a re ,  i n  general ,  func- 

Consequently, t he  optimal con t ro l  s i g n a l  v r ( t )  

SENSING AND 
LEAK VALVE + MEASURING 
VACUUM CHAMBER DEVICES 

k* - 

BOUNDARY 
CONDITION + 
GENERATOR 

1 

Figure 13. Schematic diagram of t h e  opt imal  vacuum system. 
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4.3 THE PRACTICAL IMPLEmNTATION 

It i s  apparent from the  complexity of t he  optimal feedback con t ro l  system 
t h a t  a computer i s  needed i n  order t o  synthesize such a scheme. 
before one attempts t o  obtain optimal so lu t ions  numerically, one should f i rs t  
consider the  p o s s i b i l i t y  t h a t  a c l a s s i c a l  con t ro l l e r  might do almost a s  wel l  
a s  t h e  optimal one. 
poses of t h e  Space Physics Laboratory a t  The University of Michigan, an in-  
ves t iga t ion  has been made f o r  t he  use of a sub-optimal con t ro l l e r .  

Therefore, 

Since the  optimal con t ro l l e r  i s  uneconomical f o r  t he  pur- 

5. A SUB-OPTIMAL SYSTEM 

The problem of assembling a servo system i n  the  c l a s s i c a l  way seems 
straightforward. 
worst condition is  chosen. 
t rol-servo motor i s  a su i t ab le  dr iver  f o r  t he  leak valves, through a 230:l 
gear system. 
dr ive  t h e  motor t o  i t s  f u l l  torque ra t ing .  A Maurer power amplif ier  ( ava i l -  
ab le  a t  t he  Space Physics Research Laboratory), i s  se lec ted  t o  supply the  
dr iving motor with the  necessary power. 
ing up t o  5Ow. The c i r c u i t  diagram of t h i s  am- 
p l i f i e r  i s  shown i n  Figure 14. 

A motor which i s  capable of dr iving the  given load under the  
The FPE25-11 Navy type CDA-211052 Diehl a-c con- 

An amplif ier  is  then selected with su f f i c i en t  power output t o  

This amplif ier  i s  capable of supply- 
It a l so  has a gain control .  

I n  order t o  produce adequate voltage output 

Figure 14. Maurer servo amplif ier .  



per  degree of shaf t  ro t a t ion ,  a voltage amplifier stage i s  used t o  supply the  
necessary voltage ampl i f ica t ion .  A chopper i s  a l s o  needed t o  convert t h e  d-c 
e r r o r  s i g n a l  t o  a propor t iona l  a-c one. The chopper and the  vol tage  ampl i f ie r  
s tage  a r e  i l l u s t r a t e d  i n  Figure 17. I f  t h i s  system i s  assembled ( inc luding  a 
feedback loop from the  ion gauge c o n t r o l l e r ) ,  it could be uns tab le .  It could 
a l s o  swing back and f o r t h  about t h e  f i n a l  value, taking an ino rd ina te ly  long 
time t o  s e t t l e  t o  r e s t .  These types of responses a r e  due t o  time l ags  i n  the  
system contributed mainly by the  vacuum chamber together with time constants 
i n  the  ampl i f ie r  and assoc ia ted  e l ec t ron ic s .  

I M  
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yn 

115/25 

SHIELD 
0 

- - 
Q,=GE 2N2193 

Q,=GE 2N2193 

Ti = OSBORNE 21549 

IM + IOV 
0 

0 
Output 

2N3566 

Figure 15. Chopper and voltage ampl i f i e r  s tage .  

Normally the  feedback voltage from the  output opposes o r  subrac ts  from 
t h a t  of t h e  input, so t h a t  a s  t he  e r r o r  increases ,  t h e  r e s t o r i n g  torque a l s o  
r i s e s .  If the  time l ag  between t h e  system input and output becomes g rea t  
enough, t he  feedback voltage reverses p o l a r i t y  and adds t o  t h e  input .  
r e v e r s a l  causes the e r r o r  t o  increase r a t h e r  than t o  decrease .  The overswing 
continues u n t i l  the voltage and torque s a t u r a t i o n  l e v e l  of t he  system i s  
reached. I n  t h i s  case, the  system w i l l  o s c i l l a t e  continuously.  The requi red  
s t a b i l i t y  and t h e  minimization of t he  dynamic e r r o r s  i n  t h e  system a r e  pro- 
vided by the  use of e l e c t r i c a l  compensating networks, s ince ,  f o r  mechanical 
reasons, t h e  use of a tachometer generator i s  not  des i r ed .  
s a t ing  c i r c u i t  i s  shown i n  Figure 16. Because of t h e  extreme nonlinear be- 
havior of t h e  leak valve, t h e  parameters of t h e  compensating network a r e  de- 
termined experimentally by t r i a l  and e r r o r .  I n  order t o  produce the  e r r o r  
s igna l  from the  reference and t h e  a c t u a l  s i g n a l s  and a l s o  t o  e l imina te  imped- 
ance l e v e l  problems, a d i f f e r e n t i a l  ampl i f ie r  i s  then  necessary i n  the  system. 
The d i f f e r e n t i a l  amplifier and compensating c i r c u i t  a r e  shown i n  Figure 16. 
I t  should be noted t h a t  t he  re ference  s i g n a l  i s  produced by a h ighly  accura te  

Such 

Such a compen- 



1Ov power supply through an accurate 10-turn potentiometer. 
i s  the  output of t he  ion gauge cont ro l le r .  

The a c t u a l  s igna l  

I 1  
I t  
.luf 

COM 
n 

By experimental t r i a l  and er ror ,  t he  above method of assembling the  servo 
system, a c l a s s i c a l  con t ro l l e r  o r  a sub-optimal con t ro l l e r  r e s u l t s .  
sub-optimal con t ro l l e r  can be implemented prac t icably  and i s  economically 
f e a s i b l e .  

Such a 

Figure 17 i s  a block diagram of t h e  suggested sub-optimal system 
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Figure 17. Block diagram of the  sub-optimal system. 
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